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To increase the size of the time step, and thereby extend the applicability of kinetic plasma 
simulation, analysis of the stability and accuracy of implicit time integration schemes for 
plasma particle-in-cell simulation and the synthesis of new algorithms have been undertaken. 
Three classes of implicit algorithms are considered in general form. Stability and accuracy 
calculations provide guidelines for the design and application of implicit simulation 
algorithms, as illustrated in the construction of new difference schemes with desirable 
properties. Of particular interest are the relaxation of stability constraints on the time step, 
strong damping of unwanted high-frequency modes, accuracy of the simulation of low- 
frequency phenomena, numerical secular acceleration, and numerical stability of fast and slow 
space-charge waves. The potency of higher order accurate differencing schemes in reducing 
undesirable numerical effects is demonstrated. 

1. 1~~~0000~10~ 

Our goal is to increase the size of the time step in kinetic plasma simulation, in 
order to extend the applicability to problems of wider physical interest. In this paper, 
we examine the stability and accuracy of implicit time integration schemes for plasma 
simulation. We present analyses of three classes of differencing algorithms, and show 
how to create new schemes with desired properties. Much of the analysis is an 
extension of that presented by Langdon in an earlier discussion of time integration in 
particle simulation [ 11. In an earlier paper [2], we outlined a simple scheme for 
direct implicit particle-in-cell simulation, an attractive alternative to the moment- 
equation method [3,4]. In another paper [5], we more generally formulate our 
method for direct implicit simulation, and describe many of its important properties. 
This analysis of time differencing is applicable to the moment method as well as to 
our direct method. 

The results of our stability and accuracy calculations delineate problem areas and 
provide guidelines for the design and application of implicit simulation algorithms. Of 
particular interest are the relaxation of wAt stability constraints, strong selective 
damping of high-frequency modes (wdt 2 l), the accuracy of simulation of low- 
frequency phenomena (odt 5 l), numerical secular acceleration, and the numerical 
stability of fast and slow space-charge waves. We find that most undesirable 
numerical effects are much diminished in our schemes with damping at third order in 
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At, as compared with lower-order schemes. Our analysis motivates and guides the 
design of algorithms which retain desirable dissipation of high-frequency oscillations 
while minimizing unwanted damping of low-frequency oscillations and the 
concomitant cooling of particles. Here, we shall discuss simulations having only the 
electrostatic field; similar techniques are applicable to more general physics models. 

The paper is organized as follows: A simple-harmonic-oscillator analysis of cold- 
plasma wave dispersion for three classes of implicit algorithms is presented in 
Section 2. We establish. the essential stability and accuracy properties of low- 
frequency oscillations, and describe our synthesis of time-differencing schemes with 
optimal properties. The selective reader should give this section the most attention. 
The warm-plasma dielectric functions for our implicit algorithms are calculated in 
Section 3. We synthesize magnetized implicit schemes in Section 4. Section 5 contains 
a discussion of the numerical cooling and heating of particles in the three classes of 
algorithms. Section 6 has an outline of future directions we anticipate this research 
might pursue. A proof of the need for implicit differencing to stabilize time 
integration when wAt >> 1 and a discussion of filtering are given in Appendix A. The 
numerical stability of fast and slow space-charge waves is assessed in Appendix B. 

2. HARMONIC-OSCILLATOR ANALYSIS OF COLD-PLASMA WAVE DISPERSION 

Presented here are the analyses of the stability and accuracy of three classes of 
implicit algorithms. The results of these calculations lead directly to the synthesis of 
new schemes with desired properties; examples are presented here. The most 
important design issues are the relaxation of oAt stability constraints, strong 
damping of high-frequency modes (wdt 2 1) and accuracy of the simulation of low- 
frequency phenomena (wdt 5 1). 

A normal-mode analysis of time-integration schemes with which the temporal 
stability and accuracy of any algorithm can be determined was presented in [ 11. The 
simplest calculation consists of taking the finite-difference equations, ignoring spatial- 
grid effects (kdx -+ 0), and determining how a cold-plasma oscillation is reproduced. 
For the elementary unmagnetized electrostatic algorithms considered here, the 
electrons undergo simple harmonic oscillations. Many features of the time integration 
are learned most directly by applying the difference scheme to a single-particle 
harmonic oscillator. These calculations can be extended to find linear dispersion 
properties of warm plasma, with or without finite Ax [ 11. 

It must be kept in mind that stability and dispersion properties built into these 
time-differencing algorithms are only realized fully when the implicit equations are 
solved exactly. In practice it may be necessary to iterate. Starting values for the 
iteration, and the iteration process itself, will need to be chosen with this in mind if a 
small number (e.g., one!) of iterations is to suffice. 

Class C 
The first class of algorithms we shall consider was introduced in [ 11. It was 

observed that the linear response of the particle displacement to an acceleration, for a 
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family of second-order accurate schemes, could be cast in each case into the general 
form 

x, = (coa, + c,a,-, + ... + ck-,a,-k+,)dt2 + XA (la) 

a,-, = (x; - 2x;-, + x;-&/dt’ (lb) 

i.e., the position differs from the leapfrog result x’ by an amount involving the 
acceleration at only a few time steps, with adjustable constants (c}. Eliminating x’, 
we obtain 

(~,-2x,_,+x~-~)/~t~=a,_,+c,(a,-2a,-, +a,-,) 

+ c,(a,-, - 2an-2 + an-d + -0. . 
(2) 

With the right sides of Eqs. (la) and (2) truncated to just the first term in each, we 
recover the conventional leapfrog scheme. For c, finite, the algorithm becomes 
implicit if a, depends on x,. Additional terms on the right sides of these equations 
introduce more past information and, as we shall demonstrate, can help control 
damping. 

Difference equations incorporating a velocity can be formulated in many ways: 
From (1) with xi+, - x: = v,+ ,,2df, 

(x nt1 - xJ/At = da, t I -a,)dt+c,(a,-a,-,)dt+...+v,+,,, W 

(V n+ 112 - v,- ,,2)/At = a,,. (3b) 

Or, from (2), 

6 nt1- x,)/At = v, t 1/2 

(V ntll2 -~,-~,2)/Af=a~+c,(a,+,-2a,+a,-,) 

+c,(a,-2a,-,+a,-,)+.... 

(4) 

In application, (3) requires less storage of past information. 
We now assume that there is harmonic oscillation and introduce the Fourier 

representation (XI”, a:“) = (X, A) z”, where z = exp(-iwdt). Then, from Eq. (1) or 
Oh 

X/AAt2 = c,, + c,/z + c2/z2 + . . . + z/(z - 1)‘. (5) 

In a simple harmonic oscillator, the acceleration and particle displacements are 
related by A = -wiX, with use of which, the following dispersion relation is obtained 

l/(w,, At)2 + c,, + c,/z + q/z’ + . . . + z/(z - 1)2 = 0. (6) 
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This class of algorithms is described as being second-order accurate inasmuch as 
for Fiat* < 1 [l], 

fRe o/o0 = 1 + i(~~At)~ (h - c,, - c, - ... ) $ @(At’) 

Im o/o0 = --f(~+it)~ (c, + 2c, + ... ) + b(At4). 
(7) 

These expressions can be obtained by rewriting Eq. (6) as 

(l/o:At’) + co + cleie + c2ezie + ..a - l/(4 sin’ 19/2) = 0, (8) 

where 0 z odt, and then linearizing about w G w,, . 
For general w,Ar, we wish to determine conditions on (c,,, c,,...,) such that 

Im w < 0, i.e., so that the algorithm is stable. A simple subclass of algorithms for 
which we now make such a determination is that with c, = 0 for s > 2, whose 
dispersion relation is 

cAz(z - I)2 + cl(z - I)2 + z* = 0, (9) 

where CA = c, t l/w@ ‘. Instability occurs for c, < 0 or CL < 0. Oscillations are 
stable if c, > 0 and 

c;2cc, + a. (10) 

The standard leapfrog stability limit is recovered for c0 = ci = 0. The results of 
solution of Eq. (9) are diagramed in Fig. 1. The stability boundary is plotted in 
Fig. la along with the locus of points corresponding to the most weakly damped 
normal mode whose damping has been maximized with respect to c; (or c,) for fixed 
c, (or CL). 

It is important to keep in mind that c/-, + c0 in the limit of very large time step, and 
that stability then demands nonzero c,,, i.e., implicitness. Very small time step 
corresponds to large ci, and the stability condition Eq. (10) is more easily satisfied. 

The value of ]Z ]min-max for the least damped mode, whose damping has been 
maximized with respect to c, or CA, is plotted as a function of these variables in 
Fig. lb, c. Dissipation is introduced with choice of positive c, . Strong damping of the 
plasma oscillation is usually desired over a wide range of large time steps. The point 
c, = 0.302 and c, = 0.04, on the ]z],,,~~-,,,~~ locus of Fig. 1, corresponds to an 
optimized scheme for which ]z ] - 0.5 as w,At -+ co. At low frequencies, wiAf2 < 1, 
the oscillations are reproduced accurately, with very weak damping, 

fRe w/w0 = 1 - 0.13(w,At)2 t -.-, Im o/o, = -0.02(o,At)3 t ..’ . 

We will refer to this choice of c’s as the “optimized C, scheme.” 
Denavit [3,6] has used implicit algorithms that can be cast in terms of Eq. (1). 

His first particle-pushing difference scheme (Ji) consists of 

“*+I -v, = ($a,+i t aa,-,)dt (1 la> 
X If+1 -x, = (iv,,, t iv,-,, At. (1 lb) 
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FIG. 1. (a) Stability diagram for difference schemes with cO, c, f 0 and c~.,~ = 0, c; = q, + Ilw;At’. 
The locus of points along which the maximum value of I.zl is minimized, is labeled l.zl,in-max. The 
absolute minimum 1 z 1 of the most weakly damped normal mode occurs at c,, = 0.3, c, z 0.04, and 
lzlzO.5. (b) The (zlmin.max curve minimized with respect to c, plotted against CA. (c)The ~z~,,,~~-,,,~~ 
curve minimzed with respect to c; plotted against ct. 

For a simple harmonic oscillator of frequency wO, Eqs. (11) lead to the dispersion 
relation 

-l/u&b* =X/AA? = (3z/4 + I/~z)~/(z - I)* 

= (9/16) + (l/82) + (l/162*) + z/(z - 1)2. 
WI 

Thus, comparing with Eq. (5), we identify cO = &, c, = +, and c2 = &. Equation 
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(12) is a quartic and has two pairs of stable complex-conjugate solutions for z. For 
low frequency, wiAt2 @ 1, there are weakly damped oscillations 

fRe w/w,, = 1 - (~,At)~/3 + ... , Im w/w0 = -(~,At)~/8 + et. , 

and a pair of heavily damped extraneous modes. At high frequencies, ]z 1 approaches 
l/d* 

Denavit’s second scheme (J,) has increased damping for wiAt2 B 1 and smaller 
damping and frequency shift for wiAt2 -e 1. It is [3] 

(13) 

and similarly for x,+ , - x, . Corresponding coefficients in (1) are co = 8 l/256, 
Cl = 14/256, and c2 = l/256. Errors in low-frequency oscillations are 

i-Re w/w0 = 1 - 7(~,At)~/i8 + ..a , Im w/w0 = -(~,,A[)~/32 + ... . 

At high frequencies, z approaches -i. 
Denavit’s schemes have the advantage that x and v are defined at the same time 

levels. They are, however, less accurate at low frequencies and require more storage 
of past accelerations and velocities than our optimized C, scheme. 

Class D 

A classic second-order stiffly stable scheme for a first-order ordinary differential 
equation dyldt =f is [ 7,8] 

(Y tI+1 -y,)/At - %Y, -Y,-,)/At = kfn, 1. 

Using this for dx/dt = v and dv/dt = a, setting x, = Xzn, etc., and eliminating V, we 
obtain 

(z - 1)’ (+- fz-1)’ x = z2AAt2. (14) 

The form of this equation motivates consideration of the more general class of 
schemes for which 

z2AAt2=(z- l)Q(z-‘)X (154 

= (z - 1)’ (d, + d,/z + d2/z2 + . ..) X, (15b) 

where D(z- ‘) is a polynomial in z-l, such that D(1) = 1 and roots of D(z-‘) = 0 
must be inside the unit circle in the complex z plane (i.e., damped). Equation (15b) 
corresponds to the difference equation 

a n+,At2=dg(x,+~-2x,+x,_,)+d,(x,-2x,-~+x,-2)+.... (16) 
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This result is found by expanding (15b) as a polynomial in z, then identifying the 
time level of each x term from its power of z. This class of algorithm will now be 
made second-order accurate, as was class C. 

The dispersion relation for a linear oscillator is 

AAt*/X = -w;At* = ((z - 1)/z)‘@,, + d,/z + dJz* + .a.). (17) 

We tind the solution w for low frequency, wiAt* < 1, by rewriting (17) analogous to 
(8) 

((2/w,At) sin(wAf/2))-* = eioA’D(eioA’). 

Now expand in powers of At; choose coefficients {di} so that D(1) = 1 (to force 
w + w,, as At + 0) and to eliminate the term of order At. Keeping terms through order 
At3, this yields 

(w;/w’) + ;(w,At/2)* = 1 - f (wAt)* (d, + 4d, + 9d, + . ..) 

- (i/6)(wA@ (d, + 8d, + 27d, + e-e) 

with 

l=d,+d,+d,+..., O=d,+2d,+3d2+.... (18) 

From this we find 

fRe w/w0 = 1 + b(w,,At)* (Q + do + 4d, + 9d, + . ...) 

Im w/w, = -&(w~A~)~ (do + 8d, + 27d, + ...). 
(19) 

The other, more damped, modes are given by the zeros of D(z- ‘). 
The simplest example of these algorithms has d, = 0 for s > 2; then from (18) we 

find d,, = 2, d, = -1. To create corresponding difference equations including a 
velocity, we can factor Eq. (15b) as 

z”‘VAt = X(z - 1) 

zAAt=z”*V(1-2-‘)(2-z-‘)=z”*V(2-3z-’ +z-2). 

Using the power of z in each term to identify the time level, we find equations that 
might be used in a code: 

X nt1 - x, = vnt ,/Jt 

Vntl/Z --v n--1/2 = b,+,At + f(~,-,,~ - v,-~,~). 

We shall later refer to this as “scheme D,.” 
The dispersion relation becomes 

(204 

Gob) 

(woAt)* z3 + (22 - l)(z - l)* = 0. (21) 
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This scheme saves v,-~,~ in addition to the v,-,,~ and x, saved in a conventional 
explicit leapfrog algorithm, which leads to the cubic dispersion relation Eq. (21). 
Denavit’s schemes require saving two additional quantities, v,-, and a,_, (or 
recalculating a,, _ i), and give quartic dispersion relations. 

For low frequencies, wiAt* Q 1, Eq. (21) describes weakly damped plasma waves 
with 

fRe w/w0 = 1 - (11/24)(w,At)* + . . . . Im w/w,, = -(w,At)3/2 + ..., 

and an extraneous damped mode with 1 z / + f . For high frequencies, the modes are 
much better damped, ]z] -+ (w,At)- *” than in class C schemes. The reason is that , 
the only acceleration in (16) is a, + i ; no earlier a’s are used. In application to plasma 
simulation, this means that a D scheme attempts to force charge neutrality in one 
time step, in the limit At + co. 

From (19) it is easily seen that we can arrange for damping of order At5 by 
choosing d, = f, d, = -2, and d, = 4, then verifying that the zeros (z-’ = 2 L- i) of 
D(z-i) are damped. We shall later refer to this as “scheme D2.” 

First-Order Schemes 

It is illuminating to compare the stability and accuracy properties offirst-order 
schemes with those of the second-order schemes. A class of such algorithms, used by 
Mason [4], is equivalent to 

(v nt I/2 -~~~~YAt=aa~+~ + ((1 -a)Ma,+, +2a, +a,-,) 

(x %YAt = vn + l/2’ n+1- 
(22) 

These algorithms are implicit and stable for a > 0, Proceeding as before, we obtain 
the dispersion relation 

X/AAt* = (az’ + (1 - a)(z + 1)‘/4)/(z - l)* = -l/w;At*. 

At low frequency, wiAt2 << 1, 

(23) 

fRe w/w,, = 1 - [2 + 3a(a + l)](woAt)*/24 + ... , 

Im w/w, = -aw,At/Z 

Hence, plasma waves will be damped for a > 0, and the attenuation or amplification 
of a linear mode after time t = ndt is given by (z” ] = exp(-aw~rAr/2). At low 
frequencies, wiAt2 < 1, note that the higher order accurate difference schemes are 
generally much less dissipative than first-order schemes. The damping rates in the 
higher order schemes scale as a higher power of o,At, which is usually an advantage 
in that low-frequency phenomena will be more accurately reproduced. 

Solving Eq. (23), a quadratic in z, we find that both normal modes are damped for 
a>O.Forw~At’%-landO<a<l, 

IzI = ((1 - a)/(1 + 3a))“’ (24) 
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which is stable. To increase damping at high frequencies, a must increase. This in 
turn raises the damping rate at low frequencies, which is proportional to adt. To 
obtain as much damping at high frequencies as we had in the higher order schemes, 
the nonphysical damping rate at low frequencies would be far higher in the first-order 
scheme. A specific example of interest is given by choosing a = $, which gives Iz 1 = j 
for w:At’ $ 1, approximately the same asymptotic damping as the optimized C, 
scheme. 

Summary of Simple-Harmonic-Oscillator Analysis 
The principal conclusions of this subsection are as follows: Relaxation of the w,At 

stability constraint in a plasma simulation requires implicitness, as shown here for the 
C schemes and in general in Appendix A. The coefficients in our difference equations 
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FIG. 2. The absolute value (z/ z lexp(--iwdt)( of the least damped simple-harmonic oscillator 
normal mode versus u&1* in the J, and J, schemes of Denavit (Eqs. (11) and (13)), Curtiss and 
Hirschfelder (C-H, Eq. (14)), first-order schemes (22) with a = 3/7 and l/10, the optimized C, scheme 
(cO = 0.302, c, = O&I), and the D, scheme (d, = 2, d, = -1). 
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that control the degree of implicitness and that govern dissipation jointly determine 
stability, as illustrated in Eq. (10) and Fig. 1. For midt2 b 1, implicit schemes may 
be stable, but the high-frequency oscillations are necessarily distorted; therefore, 
damping is generally desirable. We have devised several schemes that efficiently 
damp high-frequency oscillations. These can be compared in Fig. 2 where 1 z ] for the 
least damped simple-harmonic oscillator normal mode is plotted as a function of 
~$41~. These schemes require saving past particle coordinate data. How much past 
data must be saved depends on the particular scheme, and its minimization should be 
an important design consideration. Low-frequency oscillations can be simulated with 
high accuracy. The dissipation rate can be removed to high order in At, for w,At < 1, 
with proper choice of coefftcients {co, c, ,..., } in Eq. (1) or (3), or (d,, d, ,...,) in Eq. 
(16). 

3. WARM PLASMA DISPERSION 

The linear response of a warm plasma is characterized by its dispersion function 
c(k, w). Evaluation of this transcendental function is aided by expressing it as a sum 
of the dispersion function for the leapfrog integration scheme s,r, plus a term Sx. 
Methods for evaluation of elf are suggested in an appendix to [ 11. For class C 
schemes 8~ is simply expressed in terms of the velocity-space Fourier transform of 
the zero-order velocity-distribution function &(v) [ 11. Here we shall adapt that 
derivation to find a similar result for D schemes. 

The plasma-density response is due to deflectons of the particle positions from 
their unperturbed orbits, due to the accelerations experienced. For C schemes. the 
deflection (1) is separated into a leapfrog term plus the ~,a,-, terms. Using the 
methods of [ 1 ] leads immediately to’ 

e(k,co)=qXk,co) + o;At2 ‘2:’ ~~(dVf0(v)e”“-“““~‘. 
s=o 

For D schemes we begin by looking for a result analogous to (1). For leapfrog 
integration we have, from (5), X’ = z-‘Adt2/(1 - z-I)~. For D schemes, from (15a) 
we have 

z-‘D(z-‘)X=X’. 

Thus, the difference X - X’ is given by 

qz-1)(X-X’)=zX’-D(z-1)X’ 

= ((1 -z-9(z-I))/(1 -z-‘)2)AAt2. 

(26) 

(2% 

(27b) 

The last form appears to be a rational function in z- ’ but, in fact, it is seen to simply 
be a polynomal in z-r, once we use the conditions imposed on the form of D(z-I). 

’ This expression corrects Eq. (28) of [ 11, which contains a spurious factor s in the summand. 
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For accuracy we expect X to be close to X’ for low-frequency time dependence, i.e., 
z-‘D(z-‘)g 1 for z-‘r 1). The conditions can be expressed as [ 1-z-‘D(z-‘)I=0 
at z-’ = 1 for consistency, and (d/dz-I)[ 1 - z-‘D(z-‘)I = 0 at z-i = 1, for second- 
order accuracy. These are the same as (18); in the present form they show that the 
numerator of (27b) has a double zero at z-i = 1, so it can be divided exactly. Thus, 

D(z-‘)(X -X’)= (1 +r,z-’ + *** +r,-,z-‘k-3$4&2 (28) 

for a D scheme whose difference equations are of order k. Identify terms like Az -’ 
with anms, etc., to find the equivalent difference equation 

d,(x, -xi) + d,(x,-, - xk-,) + *a* + d/(-&“-k+2 - &4+2) 

= (a, + r,a,-l + ..a + rk-3an-k+3)dt2. (29) 

The right-hand side has only a few terms, but x - x’ is the result of applying the 
recursive filter D-’ to this finite sum. Therefore, the “memory” of past accelerations 
does not vanish from x - x’ after k - 2 steps, as in (I), but decays (rapidly) 
according to the zeros of D(z-‘). 

For example, in the D, scheme (k = 3), (27) becomes (2 - z-‘)(X - X’) = AAt’. 
Expanding, we obtain 

x =X’ + $[ 1 + (22)-l + (22))2 + . ..I AAt 

for ]z ] > 4. Following the methods of [ 11, the dispersion function is 

(30) 

c(k, w) = s,r(k, o) + &B; At2 f 2-” 1 dvf,(v) ei’“-k*“‘sAr. 
s=o 

(31) 

Although the last term is not a finite sum, as in (25) the series does converge rapidly, 
especially when f,(v) varies smoothly. 

For the D, scheme, from (27) we find 

X-X’= 2-z-l 1 
z-2-4z-l+5Adf2=-T 

1 1 
z-l-2+i + z-1 -2-i 1 AAt’. 

Results analogous to (30) and (31) can be found by a Taylor-series expansion of the 
fractions. 

4. MAGNETIZED ALGORITHMS 

A magnetic field is important in many physical applications. In this section we 
demonstrate how a magnetic field can be added to implicit particle simulation 
schemes. In particular, we generalize the class C and D schemes to include a 
magnetic field in such a way as to (1) reproduce the cyclotron gyration of single 
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particles in a stable fashion and with no damping for any value of the product of 
cyclotron frequency o, and the time step At, and (2) model collective modes (waves) 
in a numerically stable fashion tbr any wave frequency and time step, with frequency 
error cult2 and damping ccdt’ at low frequency, and with substantial dissipation at 
high frequency. 

Magnetized Class C Schemes 
We first consider modification of the class C schemes in the form of Eq. (3) to 

include a magnetic field B. Only (3b) changes, becoming 

(V n t l/2 -~~,~)ldt= a, + k+1,2 +v,-~,~) X (@/mc), (32) 

where a,, is due only to an electric field. Eq. (32) is the same as in the usual explicit 
leapfrog algorithm with centered implicit v x B rotation [9]. 

We now specialize this model to that commonly used for simulations of Bernstein 
modes [lo] and upper-hybrid waves propagating perpendicularly to B. The linear- 
dispersion relation for long wavelength, upper-hybrid oscillations, is derived by taking 
B = B, 2, and by taking a,, to be --wax,?, due to electrostatic lields with wave spatial 
variations in x only. Introducing the Fourier representation for time dependence as in 
Section 2, we find 

X/AAt2 = -l/w;At2 = co + cl/z + c2/z2 

f -.. + z/((z - 1)2 + (z + 1)’ w;At2/4), (33) 

where w, = qB/mc is the cyclotron frequency. With no electric field, and, thus, no 
collective effects (wP -+ 0), undamped cyclotron gyration is recovered and is described 
by the solutions of 

(z - 1)2 + (z + 1)’ w,ZAt2/4 = 0 (344 

viz., 

tan2wAt/2 = wfAt2/4. Wb) 

This modified class C algorithm remains second-order accurate; for 
(wf + wg)At2 @ 1, (33) has solutions 

fRe w/w,, = 1 + f(w,At)2 [A-- (w,/2wJ2 - (c, + c, + ...)(w~/w~)~] 
+ @(At’) 

Im w/w,, = --~(w,/w,,)(~~At)~ (c, + 2c, + ea.) + 4(At4), 

where w,, is the hybrid frequency, wi z wi + wf. For wzAt2 % 1 and wffAt2 %- 1, 
there are solutions given approximately by 

c,+c,/z+cJz2+ **- =o. 



IMPLICIT TIME INTEGRATION 21 

Stability of these solutions (lzl < 1) constrains the values of {ci}. The remaining two 
solutions of (33) correspond to modified cyclotron oscillations, whose real frequency 
has approached l rr/At (i.e., z g -l), and whose stability requires 

This necessary, but not sufkient, condition is compatible with (10). 

Magnetized Class D Schemes 

We next introduce B into the D schemes in the form of (20): 

a n+l =do[(v,+~,2-v,-~,2)/Af-t(vn+~,2 +v,-,/,1x Wlmc)l 

+ dJ(v,-,,, - vn-3/z )/At - fk- ,,z + Y-~/J x Wlmc)l + ... . (35) 

Single-particle cyclotron gyration is neither damped nor destabilized. 
The dispersion relation for long-wavelength, upper-hybrid oscillations, as supported 

by this difference scheme, is 

AAt (z - 1)’ (z + 1)2 w,2At2 
-= 

X 
-w;At2 = 

[ z2 + z2 4 1 
x(d,+d,/z+d,/z’+...). (36) 

With no electric field and no collective effects (oP + 0), undamped cyclotron 
oscillations are recovered exactly as in Eq. (34). There are still the extraneous modes 
given by D(z - ‘) = 0 and discussed in Section 2. 

With values of {di} chosen according to the same constraints (18) as in the 
unmagnetized case, second-order accuracy is obtained for wtAt2 Q 1, 

*Re w/o,, = 1 + b(w,At)2 [{ - f(w,/w,)’ 

+ (wp/w,J2 (d, + 4d, + 9dz + . ..)I + @(At”) 

Im U/O,, = ~(c+,/w,,)’ (w,,At)3 (d, + 8d, + 27d, + . . .) + @(At4). (37) 

In this limit, the upper-hybrid waves are damped KAt3 for scheme D, and KAt5 for 
scheme D,. 

For wEAt $ 1 and wiAt2 % 1, dispersion relation (36) is well approximated by 

z2 + (w,/w,)~ (z + 1)’ (d, + d,/z + d2/z2 + . ..) = 0. (38) 

For the D, scheme, (38) becomes a cubic. The dissipation of the two oscillatory 
solutions increases with increasing w,,/w,, as these modes convert from undamped 
cyclotron gyration to strongly damped Langmuir waves. The remaining mode is 
damped for any value of o,/wp. In general, the conditions for damped modes, using 
both (37) and (38), constrain the acceptable values for (di}. 
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Remarks 

For moderate values of wCAt, i.e., 52, it has usually been desirable that the radius 
of cyclotron gyration be maintained by the difference scheme; we have preserved this 
feature. With w,At % 1, however, it is not clear what is gained by this. The particle 
cannot correctly sample the variation of the field across the gyroradius, and noise at 
frequencies tit - ’ may artificially increase the gyroradius. A scheme which 
reproduced the cE x B/B* drift, while causing the gyroradius to decay when 
w,At % 1, might be preferable for a species intended to remain cold; the concomitant 
cooling of a warm species might be undesirable. These points require further thought. 

~NUMERICAL COOLING AND HEATING 

Another important aspect of numerical accuracy is illuminated by a calculation of 
the trajectory of a particle drifting through a sinusoidally varying force field, as 
reproduced by finite-difference equations. Unphysical modifications are introduced by 
finite time-step effects that depend on wavelength, time step, and particle velocity. 
(Again we ignore spatial-grid effects, kAx --) 0.) 

Secular Acceleration 

We consider difference algorithms which can be put into the form 

X II+1 -x, = vdv,+,,z, v,-,,z,...)At 

VII+ l/Z - VII-l/2 - -a,(a,+,,a,,...;v,-,/,,v,-,,,,...)At. (39) 

and a drifting particle in the wave frame of a small-amplitude sinusoidal electrostatic 
wave. The unperturbed particle velocity is V(O) and the acceleration field is 
represented as a = a’ exp(ikx) + C.C. The particle is untrapped, i.e., 144 1 - (ma/k1 < 
mv2/2, and ought to interact adiabatically with the wave. Depending on the 
functional dependence of v* and a*, however, a drifting particle will experience a 
spurious time-averaged force and will accelerate. 

For a small-amplitude wave field, we do a Taylor series expansion of x, v, and a, 
in powers of Z. Then 

e ikx = exp[ik(x”’ + v(‘)t,, + x(‘) + . . .)I. 

The time-averaged first-order acceleration is zero, and the averaged second-order 
acceleration in the fixed-wave field is given by 

(a.$‘)) = (x(l) $ a&‘“‘)) 

= (-ikx”‘Z* exp(-ikx(0)) + c.c.) 

= -ik..Z* + C.C. = 2k Im(Z*), (40) 
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where x(l) = x’exp(ikx”‘) + C.C. and we have redefined x(O) as the sum of the former 
x(O) and uco)t. Equation (40) can be rewritten as 

(Q$‘)) = 2klC[* At’ Im(.?/titz) = lil(o,,At)* Im(Z/&lt*), (41) 

where We, = I2kCl ‘I* is the trapping frequency, and Im(Z/ZAt*) will be a function of 
ku’O’At whose form depends on the difference scheme. In this form for the drag, we 
see that (cotrAt)* is a measure of the ratio of the magnitudes of the nonphysical 
secular acceleration to the physical acceleration induced by the wave field. 

The time-averaged power is given by 

(I’) = (Pco) + Z’(l) + I’(*) + e-e) = ~u’~‘((u,,+ ,,* - u,- ,,2)/At)‘2’ 

+ w%f+ l/2 + u,-,,,)“‘/WG+ ,,2 - v,- ,,2)“‘/W 

The second term on the right side averages to zero, leaving 

(P) 2 (P(2)) = d”‘(ap), (42) 

which we recognize as just the product of the zero-order drift velocity and the 
averaged second-order force. 

Class C 

For the class of algorithms represented by difference equations (1) or (2), the tirst- 
order particle displacement is related to the acceleration by 

f/&At* = -(4 sin*(0/2))-’ + co + c,eeie + ~,e-*‘~ + .a., (43) 

which follows directly from Eq. (5) with z = exp(i@), where 0 s ku’O’At. The 
averaged second-order acceleration is given by 

(a$*))/la’l = -(q,At)* (c, sin 0 + c2 sin 20 + e-m). (44) 

The acceleration is bounded, and vanishes at ku’O’At = Nn, for N= 0, f 1, +2,.... 
Particles are accelerated toward the nearest value of ku”‘At = 27rN. For I ku”‘At I < 1, 
there is a weak drag force, 

(a$“)/[ a’1 2 - (kd”‘At)(o,,At)* (cl f 2c, + . . .). 

Note the similar dependence on {c,} of the drag and the damping of the simple- 
harmonic oscillator for w,At 6 1 in Eq. (7). We can also write this as 

(a$*)) At/u”’ = -f (qrAt)4 (c, + 2c, + a..) 

which shows the velocity-decay rate depends only on o,,At. 
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In the optimized C, scheme (c, = 0.302, c, = 0.04) we find 

(a$")/lc? = - O.O4(w,,dt)* sin 0. (45) 

In Denavit’s J, scheme (c, = &, c, = $, and c, = +), described by difference 
equations (1 l), x” is related to a” according to Eq. (12), 

Z/&t2 = -(4 sin*(0/2))-’ + & + +e-‘o + +e-2ie. (46) 

From Eqs. (41) and (46) we determine that 

(a$“)/l6l = -$(qr At)* sin O( 1 + cos 0). 

This is qualitatively similar to the earlier result Eq. (45), but (a$“‘) is slightly skewed 
so that the slope of the (a$“) versus kv”‘dt curve is steeper near kv”‘dt = 0 and 
integer multiples of 2n. We find the bound @!+*‘)I < O.l6(o,,dt)* la’( occurring at 
kv”‘dt = 7r/3 for Denavit’s J, scheme, as compared to the optimized C i scheme for 
which I(a$“)l < O.O4(w,,dt)* I -1 a occurring at kv”‘dt = 7c/2. For 1 kv”‘dtl< 1, the 
particles drag to lower speeds, 

The drag on slow particles in Denavit’s J, scheme, proportional to c, + 2c, = 0.25, is 
more than 6 times as large as in the optimized C, scheme, where ci = 0.04 and 
c* = 0. 

In Denavit’s later scheme J, [3], 

(uj+?)/lfTl = -&(qrdt)* sin O(1 + +cos 0) 

with a bound l(a$*‘)l < O.O55(w,,dt)* ICI occurring at kv”‘dt = 1.433. This is one 
third as large as the bound for Denavit’s earlier J, scheme but is still larger than the 
maximum drag in our optimized C, scheme. For / kv”‘dtl< 1, the drag 

(up’)/lcl E - ~(k2+“‘Llt)(o,,At)’ 

is four times smaller than in scheme J, and 50% larger than in the optimized C, 
scheme. 

Class D 
The difference algorithm D, described earlier in Eq. (20) has properties similar to 

Denavit’s scheme. The linear displacement is related to the acceleration by 

x'= - (&it*/4 sin2(@/2))e2’e/(2eie - 1). (47) 

Using Eqs. (41) and (47), we calculate that 

(a’,“)/lcil = - (o,,dt)* sin O/(5 - 4 cos 0). 
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This result is qualitatively like that of the optimized C, scheme, but (a$?) is skewed 
to steeper slopes for kz~‘~‘dt equal to even multiples of Z, as is Denavit’s scheme. For 
low speeds, 1 kv”‘dt ] < 1, the particles again drag to lower speeds, 

(&‘)/ldl z - (kv’0’/4t)(o,,dt)2 

with scaling the same as the other algorithms but with magnitude four times larger 
than in Denavit’s scheme and 25 times that of the optimized C, scheme. The drag is 
bounded by l(a’,2’)] < (wt,dt)2 ]a]/3 occurring at kv”‘dt = 0.64, which is about twice 
the bound on the drag in Denavit’s scheme. 

First-Order Schemes 

For the first-order difference scheme, Eq. (22), the linear displacement x’ in a 
sinusoidal force field has been calculated in Eq. (23), 

Z= -(&it2/4 sin2(0/2))[aeie + (1 -a) cos2(O/2)]. (48) 

We calculate the average acceleration from Eqs. (41) and (48), 

(d+?)/lrq = --fa(o,,dt)2 cot(0/2). (49) 

The acceleration given by Eq. (49) is plotted in Fig. 3. Particles are again accelerated 

-. -- 

FIG. 3. The average second-order acceleration (&‘)/a 1 Bag = - cot(kv”‘&/2)/2 is plotted 
against kv”“dt for a first-order accurate difference scheme. The shaded bands indicate where trapping 
invalidates the perturbation theory. 

581/46/l-3 
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toward values of kv”‘At equal to integer multiples of 2n, where the acceleration 
appears to become singular. In fact, trapping occurs here, and our perturbation 
theory then becomes invalid. We determine a quantitative estimate on the regime of 
validity by setting Ikx”‘I = 1, at which point our expansion of exp(ikx”‘) fails in the 
derivation of Eq. (41). The region near kv”‘At = 27rN, where trapping occurs, is 
described by 

Ikx”‘l z /2ka’lAt2/(kv’0’At - 27rN)Z ;L 1. WY 

Using k%:, = c& = /2/G/, we find that condition equation (50) is equivalent to 

IV (‘) - 2nN/kAt) 5 vtr 

which defines the regions of trapped particles. 
For I kv”‘At)4 1, the particle acceleration is proportional to Af/kv”‘, 

(a!+?)/l&l E --a(w,,At)2/(kv’o’At) 

and increases in magnitude as the particle slows down. The acceleration for the lirst- 
order scheme is larger by B(kv’“‘At)-2 in the limit of small (kv”‘At[ than that for 
the second-order schemes described earlier. The maximum acceleration occurs at the 
onset of trapping, and is @(a la’lw,,At). 

Summary of Numerical Cooling and Heating 

The unphysical acceleration (drag) rates for the second-order schemes are all 
proportional to At3 for slow particles. This scaling and detailed dependence on the 
difference schemes correspond directly to those for the dissipation rates we found for 
low-frequency simple harmonic oscillations. Thus, the same mechanism causing 
damping of low-frequency modes is also responsible for artificial cooling or heating 
of the plasma as it interacts with electric-field structures. Use of higher order schemes 
reduces both effects. The absolute cooling or heating rates we obtain depend on the 
strength of the electric field, as measured by wtrAt, and have maxima for particles 
satisfying I kv”‘Atl z (N + f) 7~. 

In contrast, the plasma cooling/heating rates for the first-order schemes are 
generally much larger than those for the second-order accurate schemes, which argues 
strongly for the use of the higher order algorithms. Drag rates of first- and second- 
order schemes can be compared in Fig. 4 where we plot the normalized accelerations 
-(af’)/l&l(w,,At)” = -Im(Z/&At*), which are functions only of kv”‘At. Mason [4] 
has observed numerical cooling of warm plasmas in simulations with a first-order 
dissipative implicit algorithm. Significantly reduced cooling rates can be achieved by 
using the higher order accurate integration schemes. 



IMPLICIT TIME INTEGRATION 33 

0.40 

0.30 
N, 
;1 
g 0.25 

Z 
2 0.20 

" 
i 0.15 

$ 

O 0.10 

0.05 

0 

k&At 

FIG. 4. The normalized drag -(&‘)/~6~(w,,~Ir)~ = --Im(~/&lt2) versus kv”“dt for the J, and J, 
schemes of Denavit (Eqs. (11) and (13)), Curtiss and Hirschfelder (C-H, Eq. (14)), first-order schemes 
(22) with a = 3/l and l/10, the optimized C, scheme (cO = 0.302, c, = 0.04), the D, scheme (d, = 2, 
d, = -I), and the D, scheme (d,, = 5/2, d, = -2, d, = l/2). The drag has odd symmetry and is periodic 
with respect to ku to) At with period 2n. 

6. FUTURE DIRECTIONS 

This ,article presents the design and synthesis of new implicit algorithms for elec- 
trostatic particle simulation. Our goal has been to extend the applicability of particle 
simulation to plasma physics problems in which very large time steps are desirable, if 
not essential. In so doing, however, we have demanded numerical stability at large At, 
accurate reproduction of low-frequency oscillations, and significant damping of high- 
frequency modes that are severely distorted by the differencing scheme in any case. 
Our analyses of stability, accuracy, collective response, and numerical secular 
acceleration provide important guidelines for the design and optimization of new 
algorithms, which we have illustrated in the class C and D schemes. 

There are numerous areas in which this work should be extended. Our analysis of 
stability and dispersion properties is strictly applicable only when the implicit 
difference equations are solved exactly; this analysis should also be applied to the 
approximate solutions of the implicit difference equations that so far have been 
implemented [2-4], and to the iterative refinement of those solutions [5]. The effects 
of a finite spatial grid and spatial-aliasing instabilities [3] should be analyzed. We 
would like to relax At constraints imposed by kvdt 5 1 and w,,At 5 1. Direct implicit 
particle-in-cell algorithms suitable for fully electromagnetic physics models should be 
designed, requiring both implicit time differencing of Maxwell’s equations and a 
relativistic generalization of the particle mover. Finally, we anticipate that, with 
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experience acquired in physics applications with implicit algorithms, other important 
issues will emerge to motivate further development and refinement of these 
algorithms. 

APPENDIX A: STABILITY, IMPLICITNESS, AND FILTERING 

It is commonly understood that implicit time differencing is required for stable 
integration of “stiff’ systems of differential equations [ 7,8]. On the other hand, it has 
often been tempting to introduce a low-pass filter, into either the ‘particle integration 
or the field solver, in order to eliminate high frequencies from the simulation without 
the inconvenience of an implicit equation of motion. We shall show, however, that: 

(1) Stable schemes need not include any attenuation of high frequencies, but 
must be implicit. 

(2) Low-pass filtering may in fact destabilize the simulation, even at low 
frequencies, because of phase errors introduced by the filter. 

(3) Filtering considerations do enter into design of algorithms with particular 
accuracy requirements. 

Let us regard particle integration as two operations: a filter is applied to the 
sequence (a, + i , a,, , a,, _, ,..., } to produce a:, , followed by a double time integration of 
(4, a:,-,,..., } to produce x, + i . Without loss of generality, we assume the use of the 
centered leapfrog scheme for this integration, whose transfer function is X/A’ = 
zdt*/(z - l)*, which has no phase error for sinusoidal input. 

Let us consider the effect of low-pass filtering in an explicit scheme, i.e., one using 
only {a,, a,- , ,...,), and not a,, 1, to produce a; and, thence x, + i . A low-pass filter 
will introduce a time delay, so that for low frequencies a’ lags behind a by a time 
r > 0. The consequence of this phase error in a feedback loop can be inferred at low 
frequencies from its effect on a simple harmonic oscillator with continuous time 
dependence: 

d*x(t)/dt* = a’(t) E a(t - z) = --oix(t - z) 

= -w;[x(t) - z dx(t)/df]. - 

The delay produces an instability with growth rate z,ir/2. By including a,,+, in the 
difference equation, this destabilizing phase error can be reversed. 

Now consider two stable implicit schemes, Denavit’s (11) and Mason’s (22), for 
which the filter transfer functions are A’/A = z(i + a~*)* and az + (1 - a) 
(z+2+z-‘)/4, respectively. The attenuation (modulus of transfer function) by 
Denavit’s filter increases as ] odt ] rises from 0, but at the Nyquist frequency o = n/At 
(i.e., at z = - 1) there is no attenuation, the modulus is unity. This scheme achieves 
large time-step stability without attenuation at the high frequencies, where instability 
usually appears with other schemes. Similiarly, Mason’s scheme provides strongest 
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damping of high-frequency modes when a = 1 is chosen, for which the filter provides 
no attenuation of high frequencies (Eq. (24)). Conversely, the choice a = 0 provides 
strong low-pass filtering but no damping of high-frequency modes. 

For the class of integration methods discussed here, we now show that, in general, 
an implicit difference equation of motion is required for stability at large oidt’. It is 
sufficient to show this for long wavelength, %->I,, where the electron motion reduces 
to simple harmonic oscillation. As mentioned before, in an unmagnetized electrostatic 
simulation the essential particle variables are x and a; v is an auxiliary variable. 
Upon elimination of v, an order-k difference equation of motion can be written as 

x,+a,x,-,+ “’ + akxn-k = At2&,a, +Plan-1 + “’ +pka& (A-1) 

where either ak # 0 or jIk # 0, and &, # 0 for an implicit scheme. Again setting 
2 a,, = - w,,x,, then x, = Xz”, and we obtain a dispersion relation 

0 = P(z) E 
( &+Po zk 

0 1 

+ zk-‘+ **a + 
( 

++pk)- (A.21 

As o;At2 + co, the zeros of polynomial P(z) approach those of 

&,Zk +&zk-’ + ‘** & (A.3) 

unless PO = 0, i.e., the scheme is not implicit but is explicit, in which case (A.3) is 
missing some of the zeros of P. For an implicit scheme there is the possibility of 
stability (all zeros z of (A.2) inside the unit circle for all values of oiAt2). 

For an explicit scheme, PO = 0, the polynomial (A.3) has only k - 1 (or fewer) 
roots. Choose a circle in the complex z plane, centered at z = 0, with any radius > 1 
which encloses these roots. We now show that remaining roots of the dispersion 
relation lie outside this circle, for sufficiently large wiAt2. Map the circle through the 
function P(z), as in a Nyquist stability analysis; this will loop around the origin 
P = 0 only k - 1 (or fewer) times for sufficiently large oiAt2. Thus, the circle in the 
z plane does not enclose all zeros of P. Since this circle can be chosen arbitrarily 
large, we know that one (or more) roots diverge, Iz I-+ co, as coiAt2 + co. 

We have seen that large time-step stability is not a matter of attenuation of high 
frequencies, but depends strongly on phase characteristics. However, it should be 
evident that achieving higher accuracy in stable schemes can be regarded as a 
problem in filter design. For example, choosing polynomial D - 1 in (15a) produces 
a stable first-order scheme (the same as (22) with a = 1); but we tailor D(z-‘) in 
order to obtain higher accuracy of low and moderate frequencies without introducing 
offensive new modes. 
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APPENDIX B: STABILITY OF FAST AND SLOW SPACE-CHARGE WAVES 

The simple-harmonic-oscillator stability analysis in Section 2 is applicable to a 
cold, uniform, nondrifting plasma. With the addition of a drift, u,,, the plasma waves 
at frequencies w = fw, are Doppler-shifted to o = ku, f mp, where the higher 
(lower) frequency wave is termed the fast (slow) space-charge wave. In the presence 
of a resistive background the fast wave damps and the slow wave can be destabilized 
if ku, > op. This is the underlying physical mechanism for the resistive-wall amplifier 
[ 111. We address here whether implicitness and frequency-dependent dissipation in 
difference equations will artificially destabilize either space-charge wave. We find that 
the numerical stability of these waves is unaffected if the dissipation is introduced in 
a Galilean-invariant manner. 

We first consider the differencing scheme Eq. (2) The impact of including a plasma 
drift on the linear stability analysis given in Eqs. (5)-(10) is simply to introduce a 
Doppler shift in the mode frequency 

z ~ ,-iwAt -+ z z exp(-&It + iku,At). 

The form and conclusions of Eqs. (5)-(10) are unchanged. Thus, the damping and 
stability considerations are the same as for the simple harmonic oscillator, and both 
fast and slow waves are stable if c, > 0 and 

Equation (9) is equivalent to 

sin*(8/2) = (w,dt/2)* [ 1 - 4c, sin*(8/2) - 4c, sin*(f?/2) e”], (B.1) 

where 0 = oAt - ku,At. In the limit w,At 4 1, the solutions of Eq. (B.l) are 

UI = ku, f w,(l - c,w~At*/2 T ic,wiAt’/2), 03.2) 

which explicitly exhibits damping proportional to (~,dt)~ of both fast and slow 
waves if c, > 0. 

Changing the time centering of Poisson’s equation can be used to damp plasma 
waves in a nondrifting case, but leads to instability when ku, > op in the drifting 
case. Suppose that the particle advance is described by Eq. (2) with c, = 0 for s > 1 
and that Gauss’ law is represented by 

where p,, is the charge density, and E is a centering parameter satisifying 0 Q E < 1. 
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This alters the relation between the Fourier amplitudes of the linearized displacement 
and acceleration, and, hence, modifies the dispersion relation 

X/AAt* = -(l - E + EZ- 1efk”oAr)/~;At2 = co + z/(z - l)*, (B-4) 

where z depends on the Doppler-shifted frequency. 
For u0 = 0, the stability condition arising from Eq. (B.4) is 

c, + ((1 - 2c)/o;At*) > a. (B-5) 

To ensure stability at all values of (apAt)* for a given value of c,, it is required that 
E ( f. With the identifications c, = e/co~At* and c6 = co + (1 - e)/w~At*, Fig. 1 
provides details on the stability and damping characteristics of the plasma 
oscillations. 

For finite uo, Eq. (B.4) is equivalent to 

(1 - E) sin*(0/2) 

= (w,At/2)* [ 1 - 4c, sin*(0/2) - 4(e/w~At*) sin*(0/2) eiwAr]. (B.6) 

In the limit o,At Q 1, ku,At Q 1, Eq. (B.6) has solutions 

o = ku, f q,[ 1 - (c,o;At*/2(1 -E)) - k((kuo f 05,) At/2(1 -&))I. (B.7) 

The fast wave is damped, and for ku, > ku, 

7o4Tr -0.0602  Tct Tc677  Tc -o0610.1234  (foe-87o46en 3 t02481Tj0  Tr e9w (and ) Tj0 7e9(,o0610.1.803  Tr -0.0677  Tc , -0.0677  Tc -0.0441 n111ep10.-024TD 3  Tr 58-2.5  TD 3  Tr 0.1234  43  Tr -0.ve ) Tj0  Tr 33.1.5  Tw (wave ) Tj.85706 0  TD 3  Tr 03e1Tc -0.4926  T38o380 Tc -0.0102  Tw 2) Tj0  T8�02  Pve ku, 

ku, k u ,  

k u ,  k u ,  k u ,  

a n - 3 0 4 . 9 6 - 0 . - 1 2  0   T D  3   T r  0 .  - 0 . 0 3 4 2   T c  - 0 . 0 7 7 5   T w  ( k u ,  )  T j  4 D . 1 2 k u ,  > and 
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